Système à deux trou d'Young

Elargissement spatia de la source

Elargissement spectra d'une source

Eric Ouvrard

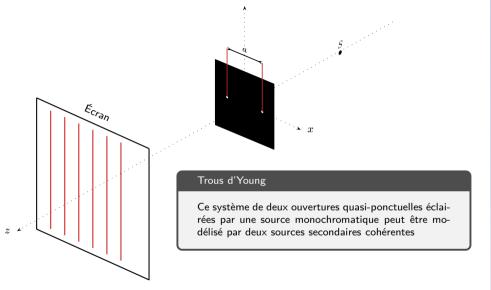
PC CPGE Lycée Dupuy de Lôme - LORIENT

13 octobre 2025

Système à deux trous d'Young

Présentation du dispositif Projection sur un écran Interférences à l'infini Franges d'interférence et Interfrange

Élargissement spatial de la source


Association des deux sources primaires
Critère de brouillage
Source étendue

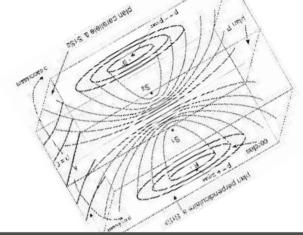
Élargissement spectral d'une source

Cas d'un doublet Source à spectre de bande Longueur de cohérence Système à deux troi d'Young

te la source

Elargissement spectra d'une source

Système à deux trous d'Young


Présentation du dispositif

Interference à l'infer

Franges d'interférence e Interfrange

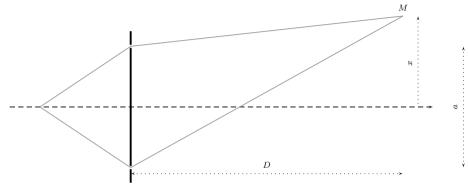
de la source

Élargissement spectral d'une source

Délocalisation des interférences

Les franges d'interférence sont observables sur l'écran quelque soit la position de celui-ci par rapport aux trous d'Young. Elles sont donc non localisées.

Système à deux trous d'Young


Présentation du dispositif

Interférences à l'infini

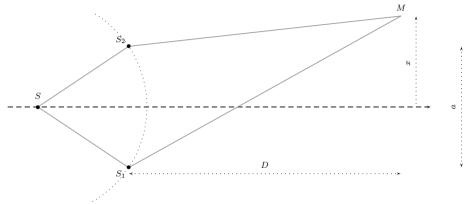
Interfrange

de la source

Elargissement spectra d'une source On considère dans cet exemple de calcul deux sources cohérentes **synchrones**. (*Cela est obtenu en plaçant la source primaire sur l'axe des systèmes de trous d'Young*)

Système à deux trous d'Young

Projection sur un écran


rojection sur un ecn

Franges d'interférence e

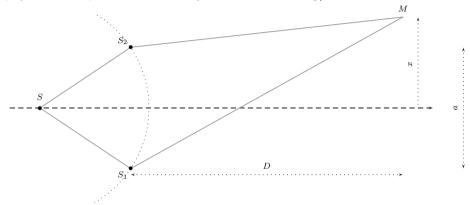
de la source

Élargissement spectral d'une source

On considère dans cet exemple de calcul deux sources cohérentes **synchrones**. (*Cela est obtenu en plaçant la source primaire sur l'axe des systèmes de trous d'Young*)

Système à deux trous d'Young

Projection sur un écran


Interférences à l'infi

Franges d'interférence e Interfrange

de la source

d'une source

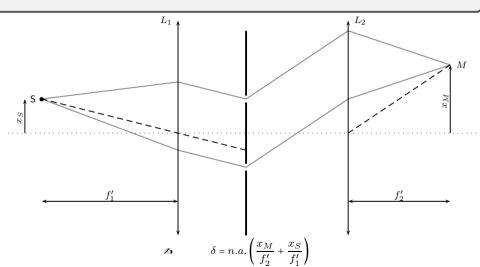
On considère dans cet exemple de calcul deux sources cohérentes **synchrones**. (*Cela est obtenu en plaçant la source primaire sur l'axe des systèmes de trous d'Young*)

$$\delta = (S_2M) - (S_1M) = \frac{n.a.x}{D}$$

Voir le chapitre précédent

Système à deux trous d'Young

Projection sur un écran

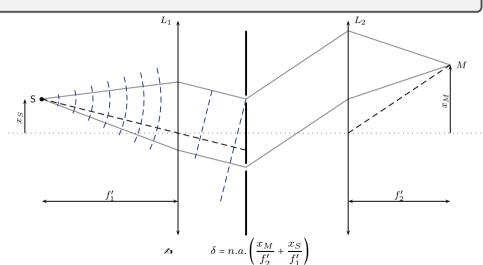

Interférences à l'inf

Franges d'interférence et Interfrange

Élargissement spectral

Dans ces conditions, la source est collimatée à l'infini et les interférences observées à l'infini.

Système à deux trous d'Young


Présentation du dispositif

Interférences à l'infini

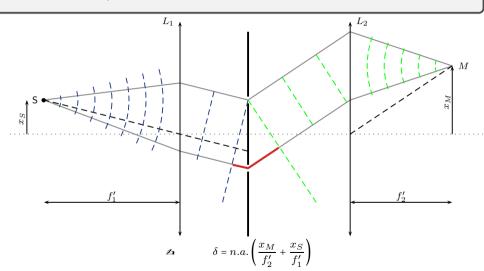
Interfrange

Élargissement spectral

Dans ces conditions, la source est collimatée à l'infini et les interférences observées à l'infini.

Système à deux trous d'Young

Présentation du dispositif


Interférences à l'infini

Franges d'interférence et Interfrange

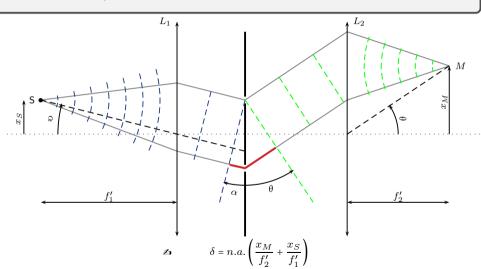
de la source

Élargissement spectra d'une source

Dans ces conditions, la source est collimatée à l'infini et les interférences observées à l'infini.

Système à deux trous d'Young

Presentation du dispositif


Interférences à l'infini

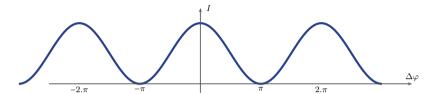
Franges d'interférence Interfrange

de la source

Élargissement spectral d'une source

Dans ces conditions, la source est collimatée à l'infini et les interférences observées à l'infini.

Système à deux trous d'Young


Présentation du dispositif

Interférences à l'infini

Franges d'interférence Interfrange

Elargissement spatia de la source

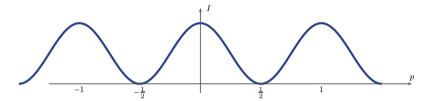
Élargissement spectral d'une source

Interfrange

L'interfrange \emph{i} correspond à la distance séparant deux franges successives.

$$i = |x_{p+1} - x_p|$$

$$i = \frac{\lambda_0.D}{n.a}$$


Système à deux trous d'Young

Projection sur un écran
Interférences à l'infini

Franges d'interférence et Interfrange

de la source

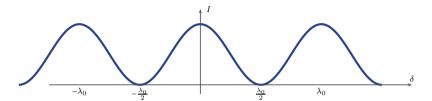
Elargissement spectra d'une source

Interfrange

L'interfrange i correspond à la distance séparant deux franges successives.

$$i = |x_{p+1} - x_p|$$

$$i = \frac{\lambda_0.D}{n.a}$$


Système à deux trous d'Young

Projection sur un écran
Interférences à l'infini

Franges d'interférence et Interfrange

de la source

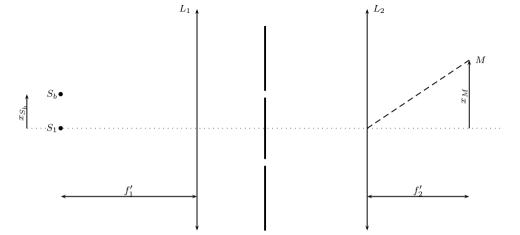
d'une source

Interfrange

L'interfrange i correspond à la distance séparant deux franges successives.

$$i = |x_{p+1} - x_p|$$

$$i = \frac{\lambda_0.D}{n.a}$$


Système à deux trous d'Young

Projection sur un écran
Interférences à l'infini

Franges d'interférence et Interfrange

de la source

Elargissement spectra d'une source

Système à deux trous

Élargissement spatial de la source

Association des deux sources primaires

Critère de brouillage Source étendue

largissement spectral l'une source

$$\Delta \varphi_a = \frac{2.\pi.n.a}{\lambda_0} \left(\frac{x_M}{f_2'} \right)$$

$$I_a = 2.I_0. (1 + \cos\Delta\varphi_a)$$

Système à deux trous d'Young

Élargissement spatial de la source

Association des deux sources primaires

Source étendue

Elargissement spectral d'une source

$$\Delta \varphi_a = \frac{2.\pi.n.a}{\lambda_0} \left(\frac{x_M}{f_2'} \right)$$

$$I_a = 2.I_0. (1 + \cos\Delta\varphi_a)$$

Pour la source
$$S_b$$
:

$$\Delta \varphi_b = \frac{2.\pi . n.a}{\lambda_0} \left(\frac{x_M}{f_2'} + \frac{x_{S_b}}{f_1'} \right)$$

$$I_b = 2.I_0. (1 + \cos\Delta\varphi_b)$$

Système à deux trous d'Young

Élargissement spatial de la source

sources primaires

Élargissement spectral d'une source

$$\Delta \varphi_a = \frac{2.\pi . n.a}{\lambda_0} \left(\frac{x_M}{f_2'} \right)$$

$$I_a = 2.I_0 . (1 + \cos \Delta \varphi_a)$$

$$\Delta\varphi_b = \frac{2.\pi.n.a}{\lambda_0} \left(\frac{x_M}{f_2'} + \frac{x_{S_b}}{f_1'} \right)$$

 $I_b = 2.I_0.\left(1 + cos\Delta\varphi_b\right)$

Pour l'association des sources :

$$I_{tot} = I_a + I_b$$

Système à deux trous d'Young

Élargissement spatial de la source

sources primaires

Elargissement spectral d'une source

Sources primaires multiples

Lorsqu'un système interférentiel est éclairé par plusieurs sources primaires, l'intensité en M est obtenue par la superposition des franges d'interférences obtenues pour chacune des sources prises séparément.

Système à deux trous d'Young

Élargissement spatial de la source

Association des deux sources primaires

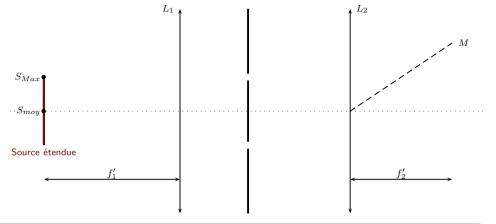
ource étendue

Élargissement spectral d'une source

Élargissement spatial de la source

sources primaires

Critère de brouillage


Source étend

d'une source

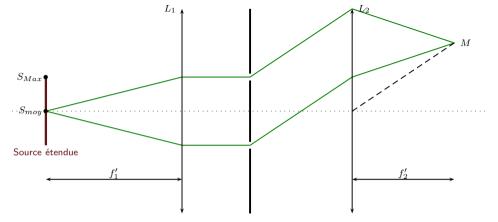
brouillage des franges pour 2 sources

La multiplication des sources entraine une diminution du contraste. Il y aura brouillage pour deux sources si les ordres p_a et p_b en M pour chacune de ces sources sont tels que

$$\left| p_{S_b} - p_{S_a} \right| = \frac{1}{2} + m \ m \in \mathcal{N}$$

On considère S_{moy} et S_{max} les position centrale est extrême de la source étendue et $p_{S_{moy}}$, $p_{S_{Max}}$ les ordres d'interférence pour les rayons issus de ces sources en M. Il y aura brouillage des interférences si

$$\left| p_{S_{moy}} - p_{S_{Max}} \right| \geqslant \frac{1}{2}$$


Système à deux trous d'Young

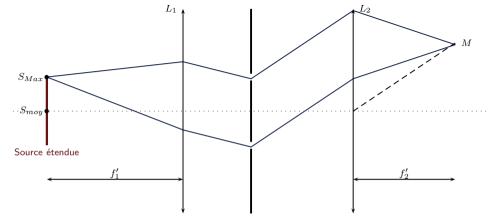
Élargissement spatial de la source

sources primaires

Source étendue

Élargissement spectral d'une source

On considère S_{moy} et S_{max} les position centrale est extrême de la source étendue et $p_{S_{moy}}$, $p_{S_{Max}}$ les ordres d'interférence pour les rayons issus de ces sources en M. Il y aura brouillage des interférences si


$$\left| p_{S_{moy}} - p_{S_{Max}} \right| \geqslant \frac{1}{2}$$

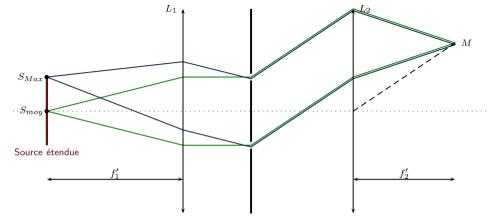
Système à deux trous d'Young

Élargissement spatial de la source

sources primaires
Source étendue

Élargissement spectra

On considère S_{moy} et S_{max} les position centrale est extrême de la source étendue et $p_{S_{moy}}$, $p_{S_{Max}}$ les ordres d'interférence pour les rayons issus de ces sources en M. Il y aura brouillage des interférences si


$$\left| p_{S_{moy}} - p_{S_{Max}} \right| \geqslant \frac{1}{2}$$

Système à deux trou d'Young

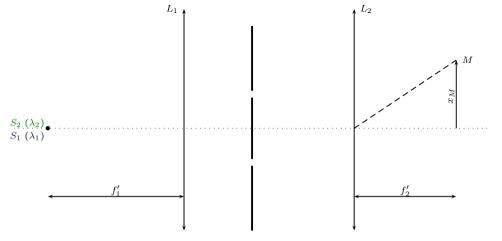
Élargissement spatial de la source

sources primaires

Elargissement spectral d'une source

On considère S_{moy} et S_{max} les position centrale est extrême de la source étendue et $p_{S_{moy}}$, $p_{S_{Max}}$ les ordres d'interférence pour les rayons issus de ces sources en M. Il y aura brouillage des interférences si

$$\left| p_{S_{moy}} - p_{S_{Max}} \right| \geqslant \frac{1}{2}$$

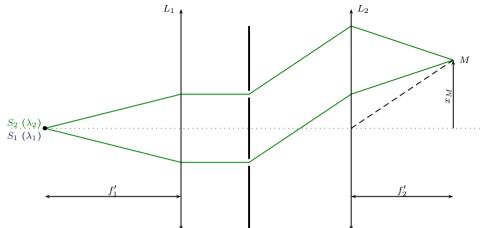

Système à deux trous d'Young

Élargissement spatial de la source

sources primaire:

Source étendue

0


Système à deux trous d'Young

Élargissement spatial de la source

Élargissement spectral d'une source

Cas d'un doublet

Source à spectre de bande

$$\Delta \varphi_a = \frac{2.\pi.n.a}{\lambda_1} \frac{x_M}{f_2'}$$

$$I_a = 2.I_0. (1 + \cos\Delta\varphi_a)$$

Système à deux trous d'Young

Elargissement spatial de la source

Élargissement spectral d'une source

Cas d'un doublet

Source à spectre de bande

$$\Delta \varphi_a = \frac{2.\pi.n.a}{\lambda_1} \frac{x_M}{f_2'}$$

$$I_a = 2.I_0. (1 + \cos\Delta\varphi_a)$$

Pour la source S_2 :

$$\Delta\varphi_b = \frac{2.\pi.n.a}{\lambda_b} \frac{x_M}{f_2'}$$

$$I_b = 2.I_0.\left(1 + \cos\Delta\varphi_b\right)$$

Système à deux trou d'Young

de la source

Élargissement spectral d'une source

Cas d'un doublet

Longueur de cohérence

$$\Delta \varphi_a = \frac{2.\pi.n.a}{\lambda_1} \frac{x_M}{f_2'}$$

$$I_a = 2.I_0. (1 + cos\Delta\varphi_a)$$

Pour la source S_2 :

$$\Delta \varphi_b = \frac{2.\pi.n.a}{\lambda_b} \frac{x_M}{f_2'}$$

$$I_b = 2.I_0. (1 + \cos\Delta\varphi_b)$$

Pour l'association des sources :

$$I_{tot} = I_a + I_b$$

Élargissement spectral d'une source

Cas d'un doublet

Système à deux trou: d'Young

Elargissement spatial de la source

Élargissement spectral d'une source

Cas d'un doublet

Source à spectre de bande Longueur de cohérence

Condition de brouillage pour un doublet

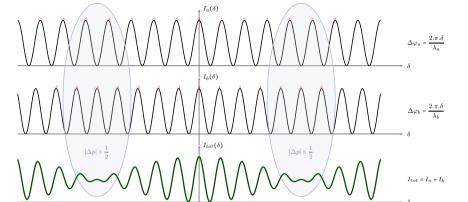
L'intensité en un point M est la superposition des franges d'interférences en ce point M obtenues pour chacune des composantes spectrales. Il y aura brouillage si

$$\left|p_{\lambda_b} - p_{\lambda_a}\right| = \frac{1}{2} + m$$

Condition de brouillage pour un doublet

L'intensité en un point M est la superposition des franges d'interférences en ce point M obtenues pour chacune des composantes spectrales. Il y aura brouillage si

$$\left|p_{\lambda_b} - p_{\lambda_a}\right| = \frac{1}{2} + m$$


Système à deux trou d'Young

Élargissement spatia de la source

Élargissement spectral d'une source

Cas d'un doublet

Source à spectre de bande Longueur de cohérence

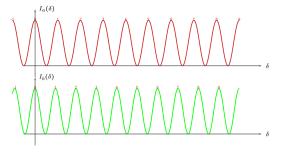
Condition de brouillage pour un doublet

L'intensité en un point M est la superposition des franges d'interférences en ce point M obtenues pour chacune des composantes spectrales. Il y aura brouillage si

$$\left|p_{\lambda_b} - p_{\lambda_a}\right| = \frac{1}{2} + m$$

Système à deux trou d'Young

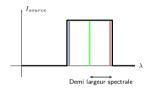
Élargissement spatial de la source

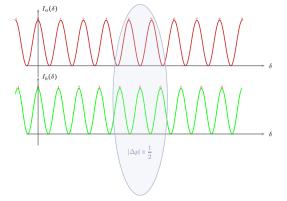

Élargissement spectral

Cas d'un doublet

Source à spectre de bande Longueur de cohérence

 I_{source}

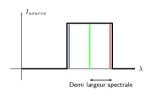

Système à deux trou: d'Young

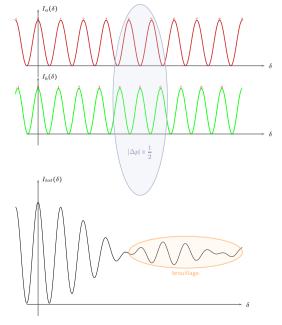

Élargissement spatia de la source

Élargissement spectral d'une source

Source à spectre de bande

Longueur de cohérence

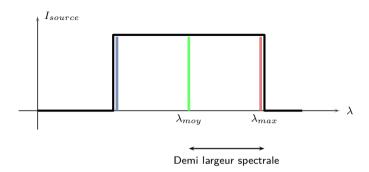

Système à deux trous d'Young


Élargissement spatial de la source

Élargissement spectral d'une source

Source à spectre de bande

Longueur de cohérence


Système à deux trou d'Young

Elargissement spatial le la source

Élargissement spectral d'une source

Source à spectre de bande

Brouillage pour une source non monochromatique

Les franges d'interférence ne sont contrastées que pour des différences de marche assez faible. Il y a brouillage dès que :

$$\left| p_{(\lambda_{max})} - p_{(\lambda_{moy})} \right| > \frac{1}{2}$$

d'Young

de la source

Élargissement spectral d'une source

Source à spectre de bande

Longueur de cohérence

$$\delta_{max} = \frac{\lambda_{moy}^2}{\Delta \lambda}$$

Par la longueur d'un train d'onde

- Durée d'émission $\tau \equiv \frac{2.\pi}{\Delta \omega} = \frac{2.\pi}{2.\pi.c.\Delta\left(\frac{1}{\lambda}\right)} \equiv \frac{\lambda_{moy}^2}{\Delta \lambda.2.\pi.c}$
- Longueur du train d'onde $l=c.\tau=\frac{\lambda_{moy}^2}{\Delta\lambda}$

Longueur de cohérence

Si la différence de marche est supérieure à la longueur d'un train d'onde, il y a brouillage de la figure d'interférence.

de la source

Élargissement spectral d'une source

Cas d'un doublet Source à spectre de ban

Longueur de cohérence