Corrigé du Devoir Surveillé n°04 (version 1).

Problème (CCP PC 2013).

Partie 1 : étude dans un cas particulier.

1. a. Le polynôme caractéristique donne les valeurs propres de A se calcule classiquement :

$$\chi_{A}(\lambda) = (-1)^{3} \cdot \begin{vmatrix} -\lambda & -1 & -1 \\ -1 & -\lambda & -1 \\ -1 & -1 & -\lambda \end{vmatrix} = (\lambda + 2) \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2) \cdot \begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda + 2) \cdot (\lambda - 1)^{2},$$

d'où : Sp(A) = {-2,1}, avec 1 valeur propre double

b. On calcule le déterminant de cette famille dans la base canonique et : $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{vmatrix} = 3 \neq 0$, et \mathscr{F} forme

bien une base de $\mathcal{M}_{3.1}(\mathbb{R})$.

Puis : $A.u_1 = u_1$, $A.u_2 = u_2$, et : $A.u_3 = -2.u_3$, et u_1 , u_2 , u_3 sont bien des vecteurs propres de A

c. On vient ainsi de montrer que A est diagonalisable (base de vecteurs propres dans R³ pour l'endomorphisme canoniquement associé à A).

d. On constate que : $B.u_1 = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$, $B.u_2 = \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix}$, et : $B.u_3 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$, d'où la réponse à la question.

2. a. On calcule de même : $\chi_B(\lambda) = -\begin{vmatrix} 3-\lambda & -3 & -1 \\ 0 & 2-\lambda & 0 \\ 1 & -3 & 1-\lambda \end{vmatrix} = (\lambda-2)^3$, et 2 est valeur propre triple de B.

b. Puis : $(B-2.I) = \begin{pmatrix} 1 & -3 & -1 \\ 0 & 0 & 0 \\ 1 & -3 & -1 \end{pmatrix}$, et les trois colonnes étant proportionnelles à u_4 : $Im(B) = Vect(u_4)$.

Avec le théorème du rang que : $\dim(E_2(B)) = \dim(\ker(B-2.I)) = 2$.

c. B n'est donc pas diagonalisable puisque $\dim(E_2(B)) \neq 3 = mult(2)$.

3. a. On commence par déterminer les deux sous-espaces propres :

• pour $E_1(A)$, on résout le système : A.X = 1.X , ce qui donne : $E_1(A) = Vect \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 \end{vmatrix}$,

soit le plan d'équation : x + y + z = 0,

• pour E₂(B), on résout le système : B.X = 2.X, ce qui donne : $E_2(B) = Vect \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$,

soit le plan d'équation : x-3.y-z=0.

On constate alors que : $E_1(A) \cap E_2(B) = Vect(u_5)$.

b. S'il y a des vecteurs propres communs à A et B, ils sont :

• dans $E_1(A) \cap E_2(B)$, ce qui donne $Vect(u_5)$,

• ou dans $E_{-2}(A) \cap E_{2}(B)$.

Or $E_{-2}(A)$ est de dimension 1 (valeur propre simple) et : $u_5 \in E_{-2}(A)$, donc : $E_{-2}(A) = Vect(u_5)$.

Et comme : $u_5 \notin E_2(B)$, $E_{-2}(A) \cap E_2(B) = \{0\}$.

Donc les vecteurs propres communs à A et B sont les vecteurs non nuls, colinéaires à u₅.

4. a. Il suffit de calculer.

b. On y va :
$$\chi_C(\lambda) = (-1)^3$$
. $\begin{vmatrix} -5 - \lambda & 3 & -1 \\ -2 & 6 - \lambda & 2 \\ -5 & 3 & -1 - \lambda \end{vmatrix} = - \begin{vmatrix} -6 - \lambda & 3 & -1 \\ 0 & 6 - \lambda & 2 \\ -6 - \lambda & 3 & -1 - \lambda \end{vmatrix} = (6 + \lambda) \cdot \begin{vmatrix} 1 & 3 & -1 \\ 0 & 6 - \lambda & 2 \\ 0 & 0 & -\lambda \end{vmatrix}$,

et donc : $\chi_C(\lambda) = \lambda . (\lambda + 6) . (\lambda - 6)$, soit : Sp(C) = {0,-6,6}.

C est donc diagonalisable (trois valeurs propres distinctes) et est semblable à D.

Puisque C et D ont même rang, on termine avec : rg(C) = rg(D) = 2.

Partie 2 : condition nécessaire et conditions suffisantes.

1. a. Il est immédiat que : $\exists (\lambda,\mu) \in \mathbb{R}^2$, $A.e = \lambda.e$, et : $B.e = \mu.e$, donc :

$$[A, B].e = A.B.e - B.A.e = A.\mu.e - B.\lambda.e = \mu.\lambda.e - \lambda.\mu.e = 0$$
.

b. Puisque $\ker([A,B])$ contient e, on a : $\dim(\ker([A,B])) \ge 1$, et : $rg([A,B]) \le n-1$, soit : rg([A,B]) < n.

Donc : «rg([A, B]) < n» est une condition nécessaire pour que A et B aient un vecteur propre commun.

- 2. a. Toute matrice de ℳ_n(ℂ) a un polynôme caractéristique qui est au moins de degré 1 (car : n ≥ 1) donc admet au moins une racine dans ℂ.
 - b. Si : [A,B] = 0, alors A et B commutent et : $\ker([A,B]) = \mathcal{M}_{0.1}(\mathbb{R})$.

De plus A admet au moins une valeur propre λ , et on constate que : $E_{\lambda}(A) \subset \ker([A,B]) = \mathcal{M}_{n,1}(\mathbb{R})$. A et B vérifient donc la propriété \mathcal{H} .

3. a. Il est clair que y est linéaire.

De plus:

 $\forall X \in E_{\lambda}(A), X \in \ker([A,B]) = \ker(A.B - B.A), d'après la propriété <math>\mathcal{F}$, et donc :

$$(A.B - B.A).X = 0$$
, soit: $A.\psi(X) = A.B.X = B.A.X = B.\lambda.X = \lambda.\psi(X)$,

ce qui permet d'en déduire que : $\psi(X) \in E_{\lambda}(A)$.

Donc ψ définit bien un endomorphisme de $E_{\lambda}(A)$.

- b. Puisque : $\dim(E_{\lambda}(A)) \ge 1$, et que ψ est un endomorphisme de $E_{\lambda}(A)$, ψ admet au moins une valeur propre μ et un vecteur propre associé X qui vérifient donc :
 - $A.X = \lambda.X$, car: $X \in E_{\lambda}(A)$,
 - $\psi(X) = \mu . X$, soit : $B.X = \mu . X$.

ce qui correspond bien à un vecteur propre commun à A et à B.

- 4. La propriété \mathscr{P}_1 est vérifiée car si E est de dimension 1 de base e, deux endomorphismes φ et ψ de E auront toujours e comme vecteur propre commun.
- 5. a. Puisque A et B ne vérifient pas \mathscr{F} , on en déduit (par négation) que : $\forall \mu \in Sp(A), E_{\mu}(A) \not\subset ker(C)$.

Donc pour la valeur propre λ de A, on a : $E_{\lambda}(A) \not\subset \ker(C)$, et donc :

 $\exists u \in E_{\lambda}(A), C.u \neq 0$, et u vérifie évidemment : $A.u = \lambda.u$.

- b. Puisque : rg(C) = 1, et que : $v = C.u \in Im(C)$, est non nul, ce vecteur v constitue une base de Im(C).
- c. On peut écrire : $v = C.u = (A.B B.A).u = A.B.u B.\lambda.u = (A \lambda.I).(B.u) \in Im_{\lambda}(A)$.

Donc : $Im(C) \subset Im_{\lambda}(A)$.

d. La guestion précédente prouve que : dim $(Im(A - \lambda.I_n)) \ge 1$.

Mais : $dim(E_{\lambda}(A)) = dim(ker(A - \lambda.I_n)) \ge 1$, puisque λ est valeur propre de A, et le théorème du rang montre alors que : $dim(Im_{\lambda}(A)) \le n - 1$.

e. On constate alors que : $[A, A - \lambda I_n] = A \cdot (A - \lambda I_n) - (A - \lambda I_n) \cdot A = A^2 - \lambda \cdot A - (A^2 - \lambda \cdot A) = 0$,

et:
$$[B, A - \lambda . I_n] = B.(A - \lambda . I_n) - (A - \lambda . I_n) . B = B.A - \lambda . B - (A.B - \lambda . B) = -(A.B - B.A) = -C$$
.

Puis A et $(A - \lambda.I_n)$ commutant, l'image de l'un (ici $Im_{\lambda}(A)$) est stable par l'autre ce qui permet d'affirmer que ϕ définit un endomorphisme de $Im_{\lambda}(A)$.

Enfin: $\forall Y \in Im_{\lambda}(A), \exists X \in \mathcal{M}_{n,1}(K), Y = (A - \lambda I_n)X$.

On constate alors que : $B.(A - \lambda I_n)X - (A - \lambda I_n).B.X = -C.X$, et donc :

$$\psi(Y) = B.(A - \lambda I_n)X = (A - \lambda I_n).B.X - C.X \in Im_{\lambda}(A),$$

car : $(A - \lambda I_n).B.X \in Im_{\lambda}(A)$, et : $C.X \in Im_{\lambda}(A)$, d'après la question II.5.c.

Donc ψ laisse également stable $Im_{\lambda}(A)$.

f. λ et ψ sont des endomorphismes du \mathbb{C} -espace vectoriel $\text{Im}_{\lambda}(A)$ de dimension : $1 \le k = \text{dim}(E_{\lambda}(A)) \le n - 1$. De plus : $\forall Y \in \text{Im}([\phi,\psi]), \exists X \in \text{Im}_{\lambda}(A), Y = \phi \circ \psi(X) - \psi \circ \phi(X) = A.B.X - B.A.X = [A,B].X \in \text{Im}([A,B]).$ Donc : $Im([\phi,\psi]) \subset Im([A,B]) = Im(C)$, avec : rg(C) = 1, soit donc : $rg([\phi,\psi]) \le 1$.

Donc il existe un vecteur propre commun (non nul dans $Im_{\lambda}(A)$) à φ et ψ .

Ce vecteur X vérifie alors : \exists $(\alpha,\beta) \in \mathbf{K}^2$, $\varphi(X) = A.X = \alpha.X$, et : $\psi(X) = B.X = \beta.X$, et X est aussi vecteur propre commun à A et B.

6. a. Attention, il faut terminer proprement la récurrence.

La propriété \mathcal{P}_1 est vérifiée.

De plus, si on suppose \mathscr{P}_k vraie pour : $1 \le k \le n-1$, et si A et B sont deux matrices de $\mathscr{M}_n(\mathbb{C})$ (ou deux endomorphismes d'un \mathbb{C} -espace vectoriel de dimension n), alors :

- si A et B vérifient la propriété \mathcal{H} , elles ont un vecteur propre en commun (question II.3),
- si A et B ne vérifient pas la propriété \mathcal{H} , elles ont un vecteur propre en commun (question II.5), ce qui montre que \mathcal{S}_n est vraie et ce qui termine la récurrence.
- b. La condition « $rg([\varphi,\psi]) \le 1$ » est donc suffisante pour que φ et ψ aient un vecteur propre commun et la même condition est valable pour les matrices.

Partie 3 : étude d'un autre cas particulier.

- 1. C'est immédiat en réindexant : $g(P) = X^{2.n} \cdot \sum_{k=0}^{2.n} a_k \cdot \frac{1}{X^k} = \sum_{k=0}^{2.n} a_k \cdot X^{2.n-k} = \sum_{i=0}^{2.n} a_{2.n-j} \cdot X^i$, avec : k = 2.n j.
- 2. f et g sont clairement linéaires.

Par ailleurs il est également immédiat (pour f) que : \forall P \in E, $f(P) \in$ E, et l'expression trouvée à la question III.1 montre que c'est encore vrai pour g.

3. a. Si P est vecteur propre de g, alors : $\exists \lambda \in \mathbb{C}, \ \lambda \cdot \sum_{i=0}^{2.n} a_j \cdot X^j = \sum_{i=0}^{2.n} a_{2.n-j} \cdot X^j$.

De plus, P étant non nul, il existe k tel que : $a_k \neq 0$, et donc : $a_k = \lambda . a_{2.n-k}$, et : $a_{2.n-k} \neq 0$.

Or l'un des deux indices (k ou (2.n - k)) est plus grand que n, et P comporte un terme d'exposant plus grand que n.

Finalement : $deg(P) \ge n$.

- b. Il est immédiat que : $g(X^n) = X^n$, et X^n est vecteur propre de g associé à la valeur propre 1.
- 4. a. C'est immédiat par exemple par récurrence :
 - $\bullet \ \text{ker(f)} = \mathbb{C}_0[X], \ \text{puisque} : \forall \ \mathsf{P} \in \ \mathsf{E}, \ (\ f(P) = 0\) \Leftrightarrow (\ P' = 0\) \Leftrightarrow (\mathsf{P} \in \ \mathbb{C}_0[X]).$
 - si pour : $1 \le i \le 2.n 1$, on a : $\ker(f^{i+1}) = \mathbb{C}_{i-1}[X]$, alors :

$$\forall \; \mathsf{P} \in \mathsf{E}, \, (\, f^{\,i+1}(P) = 0 \,) \Leftrightarrow (\, f^{\,i}(f(P)) = 0 \,) \Leftrightarrow (\, f(P) \in \, \mathbb{C}_{\mathsf{i}\text{-}1}[\mathsf{X}]) \Leftrightarrow (\, P' \in \, \mathbb{C}_{\mathsf{i}\text{-}1}[\mathsf{X}]) \Leftrightarrow (\, \mathsf{P} \in \, \mathbb{C}_{\mathsf{i}}[\mathsf{X}]).$$

Donc on a bien alors : $\ker(f^i) = \mathbb{C}_{i+1-1}[X]$, ce qui termine la récurrence.

b. On en déduit que : $\ker(f^{2.n+1}) = \mathbb{C}_{2.n}[X] = E$, donc : $f^{2.n+1} = 0$, et $X^{2.n+1}$ est annulateur pour f.

Or une valeur propre de f est obligatoirement racine de ce polynôme annulateur et la seule valeur propre possible est 0.

De plus 1 est vecteur propre de f pour la valeur 0 : 0 est donc l'unique valeur propre de f.

On peut dire aussi que 0 **est** valeur propre de f car c'est la seule possible et un endomorphisme d'un \mathbb{C} -espace vectoriel admet **toujours** une valeur propre.

5. 0 est aussi la seule valeur propre de f^i , pour tout entier : $i \in \{1, ..., 2.n\}$ (car f^i a obligatoirement une valeur propre et c'est la seule possible, toujours avec un polynôme annulateur) et son seul espace propre est donc : $\ker(f^i) = \mathbb{C}_{i-1}[X]$.

Par conséquent, pour que f^i et g aient un vecteur propre en commun, il est nécessaire que : $i \ge n$, puisque tout vecteur propre de g a un degré supérieur ou égal à n.

Réciproquement, il est suffisant d'avoir : $i \ge n$, car alors X^n est vecteur propre commun à f^i et à g.

6. On commence par calculer les images des vecteurs de la base \mathscr{G}_c par f et g et :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 2.n \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}, \text{ et } : B_{n} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

7. a. Avec la question précédente on constate que A₁ et B₁ sont bien les matrices proposées, puis :

$$A_1^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, et: $A_1^3 = 0_3$.

$$\text{b. Puis}: [A_1, B_1] = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}, \text{ et}: [A_1^2, B_1] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \text{ d'où}: rg([A_1, B_1]) = 2, rg([A_1^2, B_1]) = 2.$$

c. On constate que : $rg([A_1, B_1]) < 3$, (donc la condition nécessaire de la question II.1.b est vérifiée) et pourtant A_1 et B_1 n'ont pas de vecteur propre en commun (vu la question III.5).

De même : $rg([A_1^2, B_1]) > 1$, (donc la condition suffisante de la question n'est pas vérifiée) et pourtant A_1^2 et B_1 ont un vecteur propre en commun (vu toujours la question III.5).

Partie IV: forme normale pour un vecteur propre.

1. S'il existe dans $E_{\lambda}(A)$ un vecteur tel que : $x_1 = 0$, alors A admet un vecteur propre associé à λ sous forme normale.

Sinon, puisque $E_{\lambda}(A)$ est de dimension au moins 2, on peut trouver deux vecteurs X et Y dans $E_{\lambda}(A)$ non colinéaires tels que : $x_1 \neq 0$, et : $y_1 \neq 0$.

Le vecteur : $Z = X - \frac{x_1}{y_1} Y$, est alors non nul (X et Y sont non colinéaires), dans $E_{\lambda}(A)$ (c'est un sous-

espace vectoriel de $\mathcal{O}_{n,1}(\mathbb{C})$, et : $z_1 = 0$.

Donc Z est un vecteur propre de A sous forme normale associé à λ .

- 2. a. Puisque : dim($\mathcal{N}_n(\mathbb{C})$) = $\frac{n \cdot (n-1)}{2} \ge 1$, $\mathcal{N}_n(\mathbb{C})$ n'est pas réduit à $\{0_n\}$.
 - b. Toute matrice antisymétrique a des éléments diagonaux nuls et toute colonne d'une telle matrice est donc élément de A.
 - c. φ et ψ sont linéaires (c'est immédiat) et : \forall M \in $\mathscr{A}_n(\mathbb{C})$,

$${}^{t}\varphi(M) = {}^{t}(A.M + M.{}^{t}A) = -M.{}^{t}A + A.(-M) = {}^{t}(A.M + M.{}^{t}A) = -\varphi(M)$$
, soit : $\varphi(M) \in \mathscr{A}_{n}(\mathbb{C})$, et : ${}^{t}\psi(M) = A.{}^{t}M.{}^{t}A = -A.{}^{t}M.{}^{t}A = -\psi(M)$, soit : $\psi(M) \in \mathscr{A}_{n}(\mathbb{C})$.

- d. Il suffit de calculer : $\forall M \in \mathcal{N}_n(\mathbb{C}), \ \varphi \circ \psi(M) = A.(A.M.^tA) + (A.M.^tA).^tA = \psi \circ \varphi(M)$.
- 3. a. Il est clair que
 - B est antisymétrique car : ${}^{t}B = {}^{t}(X_{1}, {}^{t}X_{2} X_{2}, {}^{t}X_{1}) = X_{2}, {}^{t}X_{1} X_{1}, {}^{t}X_{2} = -B$.
 - $A.B + B.{}^{t}A = (\lambda_{1}.X_{1}.{}^{t}X_{2} \lambda_{2}.X_{2}.{}^{t}X_{1}) + X_{1}.{}^{t}(A.X_{2}) X_{2}.{}^{t}(A.X_{1}) = (\lambda_{1} + \lambda_{2}).B$, et donc: $A.B + B.{}^{t}A = (\lambda_{1}.X_{1}.{}^{t}X_{2} \lambda_{2}.X_{2}.{}^{t}X_{1}) + \lambda_{2}.X_{1}.{}^{t}X_{2} \lambda_{1}.X_{2}.{}^{t}X_{1} = (\lambda_{1} + \lambda_{2}).B$.
 - $\bullet \ A.B.{}^{t}A = A.X_{1}.{}^{t}(A.X_{2}) A.X_{2}.{}^{t}(A.X_{1}) = \lambda_{1}.\lambda_{2}.X_{1}.{}^{t}X_{2} \lambda_{2}.\lambda_{1}.X_{2}.{}^{t}X_{1} = (\lambda_{1}.\lambda_{2}).B \ .$

Enfin supposons : B = 0.

Puisque : $X_2 \neq 0$, $\exists \ 1 \leq i \leq n$, $x_{i,2} \neq 0$, et la colonne i de la matrice B donnerait : $x_{i,2}.X_1 - x_{i,1}.X_2 = 0$, ce qui montrerait que les matrices X_1 et X_2 sont colinéaires, ce qui n'est pas possible puisque ce sont deux vecteurs propres de A associés à deux valeurs propres distinctes.

- Donc : $B \neq 0$.
- b. Il suffit d'écrire : $(A \lambda_1 I_n) \cdot (A \lambda_2 I_n) \cdot B = A^2 \cdot B (\lambda_1 + \lambda_2) \cdot A \cdot B + \lambda_1 \cdot \lambda_2 \cdot B = 0$, avec ce qui précède.
- c. Si on développe le produit : $(A \lambda_2 I_n) \cdot B = 0$, par colonnes cela s'écrit :

$$\begin{split} &(A-\lambda_2.I_n).(C_1\Big|C_2...\Big|C_n) = ((A-\lambda_2.I_n).C_1\Big|(A-\lambda_2.I_n).C_2...\Big|(A-\lambda_2.I_n).C_n) = 0 \text{ , donc : } \\ \forall \text{ 1} \leq \text{i} \leq \text{n, } (A-\lambda_2.I_n).C_i = 0 \text{ , soit : } C_i \in \ker(A-\lambda_2.I_n) \text{ .} \end{split}$$

De plus B étant non nulle, l'une de ses colonnes C_k au moins est non nulle et C_k est vecteur propre de A associé à la valeur propre λ .

Enfin, B étant antisymétrique, toute colonne de B comporte au moins un terme nul (question IV.2.b). Donc C_k est un vecteur propre de A sous forme normale.

d. Si maintenant : $(A - \lambda_2 I_n).B \neq 0$, l'une des colonnes C_j de cette matrice est non nulle.

Mais alors : $(A - \lambda_1 I_n).C_i = 0$, et C_i est vecteur propre de A associé à λ_1 .

Mais C_j s'obtient (toujours avec un produit par blocs)avec : $C_j = (A - \lambda_2 I_n).B_j$, où B_j est la j^{ième} colonne de la matrice B et est dans \mathcal{N} , puisque B étant antisymétrique, toutes ses colonnes comporte un terme non nul

Donc C_i est vecteur propre de A sous forme normale (avec la deuxième version de la définition).

- 4. a. Les endomorphismes de la question IV.2 vérifient : $[\varphi,\psi] = \varphi \circ \psi \psi \circ \varphi = 0$, donc : $rg([\varphi,\psi]) = 0 \le 1$. Donc φ et ψ possèdent un vecteur propre en commun (d'après la question II.6) qu'on note B. Alors :
 - B est antisymétrique par construction, et non nulle, puisque vecteur propre d'endomorphisme,
 - $A.B + B.^{t}A = \varphi(B) = \alpha.B$, α étant la valeur propre associée à B comme vecteur propre de φ et :
 - $A.B.^{t}A = \psi(B) = \beta.B$, β étant la valeur propre associé à B comme vecteur propre de ψ .
 - b. On écrit : $(A^2 \alpha . A + \beta . I_n) . B = A^2 . B A . (A . B + B . ^t A) + \beta . B = -A . B . ^t A + A . B . ^t A = 0$.
 - c. Le polynôme $(X^2 \alpha . X + \beta)$ se factorise dans $\mathbb C$ en : $X^2 \alpha . X + \beta = (X \gamma) . (X \delta)$, ce qui donne deux complexes γ et δ vérifiant l'égalité demandée.
 - d. Les arguments de la question IV.3.c peuvent être repris ici pour fournir une colonne de B, vecteur propre de A sous forme normale, associé à δ .

Comme λ est la seule valeur propre de A, on a donc : $\delta = \lambda$.

e. De même que dans la question IV.3.d, et si on note : $C = (A - \delta I_n).B$, alors l'une des colonnes C_j de C est non nulle.

Cette colonne s'écrit : $C_j = (A - \delta I_n).B_j$, où B_j est sous forme normale (puisque B est antisymétrique et ses éléments diagonaux toujours non nuls).

Enfin : $(A - \gamma I_n).C = (A - \gamma I_n).(A - \delta I_n).B = 0$, d'où : $(A - \gamma I_n).C_j = 0$, et C_j est vecteur propre de A sous forme normale.

f. Puisque : $\delta \neq \lambda$, la matrice $(A - \delta I_n)$ est inversible car λ est la seule valeur propre de A.

Donc on peut multiplier l'égalité : $(A-\gamma.I_n).(A-\delta.I_n).B=0$, par $(A-\delta.I_n)^{-1}$ et comme les matrices $(A-\gamma.I_n)$ et $(A-\gamma.I_n)$ commutent, on en déduit que : $(A-\gamma.I_n).B=0$.

B étant non nulle, une au moins de ces colonnes est non nulle et est vecteur propre de A associé à γ (donc à λ puisque c'est toujours la seule valeur propre de A).

Enfin, l'élément diagonal situé initialement sur la diagonale de B est non nul, et A admet à nouveau au moins un vecteur propre sous forme normale.

g. Dans ce cas encore, A possède un vecteur propre sous forme normale.