
Notes de cours

Séries de fonctions

PC, Lycée Dupuy de Lôme

I désigne un intervalle de R. K désigne R ou C.

1 Modes de convergence

1.1 Convergence simple d’une série de fonctions

Définition (convergence simple) Soit (fn)n≥0 une suite de fonctions toutes définies sur I, on dit que
la série

∑
fn converge simplement sur I si pour tout x ∈ I, la série numérique

∑
fn(x) converge.

Exemple La fonction ζ est définie sur ]1,+∞[ :

F (x) =

+∞∑
n=1

1

nx

Exemple La série de fonction suivante converge simplement sur R :

S(x) =

+∞∑
n=1

x

x2 + n2

Exemple Trouver l’ensemble de définition de :

S(x) =

+∞∑
n=0

(−1)n

n− x

1.2 Convergence normale d’une série de fonctions

Notation Soit f : I → K une fonction bornée, on note

‖f‖∞ = sup{|f(t)|, t ∈ I}

Définition (convergence normale) Soit (fn)n≥0 une suite de fonctions toutes définies sur I, on dit
que la série de fonction

∑
fn converge normalement sur I si la série numérique

∑
‖fn‖∞ converge.

Exemple La fonction série de fonction suivante converge normalement sur [a,+∞[ (a > 1) mais pas sur
[1,+∞[

F (x) =

+∞∑
n=1

1

nx

Théorème (convergence normale par domination) Soit (fn)n≥0 une suite de fonctions toutes définies
sur I, on suppose qu’il existe une suite (an)n≥0 telle que la série

∑
an converge et

∀x ∈ I, |fn(x)| ≤ an

Alors la série de fonction
∑
fn converge normalement sur I.

Preuve ...

Exemple Calculer M , en déduire la convergence normale sur [0,+∞[ de la série
∑
fn :

M = sup{2u2e−u, u ≥ 0} fn(x) =
sin(x2)

ch(nx)

Remarque Pour prouver la convergence normale d’une série de fonctions, il y a deux méthodes : utiliser
la définition ou le théorème de domination.
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1.3 Convergence normale d’une série de fonctions sur tout segment

Définition (convergence normale sur tout segment) Soit (fn)n≥0 une suite de fonctions toutes définies
sur I, on dit que la série de fonction

∑
fn converge normalement sur tout segment de I si pour tout

a, b tels que [a, b] ⊂ I, la série de fonction
∑
fn converge normalement sur [a, b]

Exemple La série de fonction S converge normalement sur tout segment de R où

S(x) =

+∞∑
n=1

2x

x2 + n2

1.4 Liens entre les modes de convergence

Proposition Soit (fn)n≥0 une suite de fonctions toutes définies sur I. Si la série de fonctions
∑
fn

converge normalement sur I ( ou normalement sur tout segment de I), alors la la série de fonctions∑
fn converge simplement sur I.

Preuve ...

Remarque La réciproque est fausse

Exemple La série de fonction suivante converge simplement mais pas normalement sur [0,+∞[.

S(x) =

+∞∑
n=1

(−1)n−1

√
n

e−nx

Remarque Il est vrai que la convergence normale sur I implique la convergence normale sur tout segment
de I. La réciproque est fausse.

Remarque La série de fonction suivante converge normalement sur tout segment de R mais pas sur
normalement sur R. mais pas normalement sur [0,+∞[.

S(x) =
+∞∑
n=1

2x

x2 + n2

2 Etude d’une fonction définie par une série

2.1 Continuité-limites

Théorème (continuité d’une fonction définie par une série) Soit (fn)n≥0 une suite de fonctions
toutes définies sur I. On suppose :
– Pour tout n ≥ 0, fn est continue sur I
– La série de fonctions

∑
fn converge normalement sur I (ou normalement sur tout segment de I)

Alors la fonction S définie sur I par :

S(x) =

+∞∑
n=0

fn(x)

est continue sur I

Preuve ...

Exemple Montrer que S est continue sur ]0,+∞[

S(x) =

+∞∑
n=1

1

n+ n2x

Exemple Trouver l’ensemble de continuité de S

S(x) =

+∞∑
n=0

ln(1 + x2n)
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Exemple Trouver un équivalent en 0+ de S :

S(x) =
+∞∑
n=0

1

n2 + x

Théorème (limite d’une fonction définie par une série) Soit (fn)n≥0 une suite de fonctions toutes
définies sur I. Soit a une extrémité de I (éventuellement a = ±∞). On suppose :
– Pour tout n ≥ 0, cette limite existe :

bn = lim
x→a

fn(x)

– La série de fonctions
∑
fn converge normalement sur I.

Alors la série
∑
bn converge et :

lim
x→a

+∞∑
n=0

fn(x) =

+∞∑
n=0

bn

Exemple Calculer la limite en +∞ de S :

S(x) =

+∞∑
n=0

1

2n
th(

x

2n
)

Exemple Calculer la limite en +∞ de S, puis en trouver un équivalent par comparaison série intégrale :

S(x) =

+∞∑
n=1

1

x2 + n2

2.2 Dérivabilité

Théorème (dérivabilité d’une fonction définie par une série) Soit (fn)n≥0 une suite de fonctions
toutes définies sur I. On suppose :
– Pour tout n ≥ 0, fn est C1 sur I.
– La série de fonctions

∑
fn converge simplement sur I.

– La série de fonctions
∑
f ′
n
converge normalement sur I (ou normalement sur tout segment de I).

Alors la fonction S définie sur I par :

S(x) =

+∞∑
n=0

fn(x)

est C1 sur I et

∀x ∈ I, S′(x) =

+∞∑
n=0

f ′
n
(x)

Exemple Pour tout z ∈ C, on pose φz(t) = ezt. Alors φz est C1 sur R et

∀t ∈ R, φ′z(t) = zezt

Exemple Montrer que la série de fonctions S est C1 sur R

S(x) =
+∞∑
n=1

1

n
arctan(

x

n
)

Théorème (dérivées successive d’une fonction définie par une série) Soit (fn)n≥0 une suite de
fonctions toutes définies sur I. Soit k ∈ N∗ ∪+∞.On suppose :
– Pour tout n ≥ 0, fn est Ck sur sur I.
– La série de fonctions

∑
fn converge simplement sur I.

– Pour tout k ∈ {1, · · · , p},la série de fonctions∑ f
(k)
n converge normalement sur I (ou normalement

sur tout segment de I).
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Alors la fonction S définie sur I par :

S(x) =
+∞∑
n=0

fn(x)

est Ck sur I et

∀x ∈ I, S(k)(x) =

+∞∑
n=0

f (k)
n (x)

Exemple Montrer que S est C2 sur ]0,+∞[

S(x) =

+∞∑
n=1

1

n+ n2x

Exemple Montrer que S est C∞ sur R :

S(x) =

+∞∑
n=0

e−nx

1 + n2

2.3 Intégration

Il existe deux théorèmes d’intégration des séries de fonctions selon que l’on soit sur un segment ou non.

Théorème (intégration d’une série de fonctions, version segment) Soit (fn)n≥0 une suite de fonc-
tions toutes définies sur un segment I. On suppose :
– Pour tout n ≥ 0, fn est continue sur I
– La série de fonctions

∑
fn converge normalement sur I

Alors : ∫
I

+∞∑
n=0

fn(x)dx =
+∞∑
n=0

∫
I

fn(x)dx

Preuve revenir aux sommes partielles

Exemple Calculer In, en déduire la relation :

In =

∫ 2π

0

cosn(x)dx ,

∫ 2π

0

e2 cos(x)dx = 2π
+∞∑
n=0

1

(n!)2

Exemple Calcul de ∫ 1

0

ψ(x)dx , ψ(x) =
+∞∑
n=2

(
1

n− x
− 1

n+ x
)

Théorème (intégration d’une série de fonctions, version générale) Soit (fn)n≥0 une suite de fonc-
tions toutes définies sur I. On suppose :
– Pour tout n ≥ 0, fn est continue par morceaux, intégrable sur I.
– La série

∑
fn converge simplement sur I vers une fonction continue par morceaux.

– La série numérique
∑∫

I
|fn(x)|dx converge.

Alors la fonctions S définie sur I par

S(x) =

+∞∑
n=0

fn(x)

est intégrable sur I et ∫
I

+∞∑
n=0

fn(x)dx =

+∞∑
n=0

∫
I

fn(x)dx

Exemple Montrer que ∫ 1

0

ln(t)

1− t
dt = −π

2

6
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Exemple Montrer que pour tout α > 1,

+∞∑
n=2

1

nα ln(n)
=

∫ +∞

α

(F (x) − 1)dx

où

F (x) =

+∞∑
n=1

1

nx
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