Equations différentielles.

Exercices de base.

Dans tous les exercices, même si la question n'est pas posée, on pourra se demander s'il est possible, a priori, de se faire une idée sur la structure de l'ensemble des solutions de l'équation proposée.

Equations différentielles linéaires du premier ordre.

- 1. Résoudre les équations différentielles suivantes, en étudiant les éventuels raccordements possibles :
 - $x.y' y (x^2 + 1) = 0$.
 - $x.(1 + x^2).y' (x^2 1).y + 2.x = 0.$
 - $x^3 \ln|x| \cdot y' x^2 \cdot y (2 \ln|x| + 1) = 0$.
 - $\sin(x).y' \cos(x).y \sin(x) = 0.(\sin \mathbb{R})$
 - $x^n.y' \alpha.y = 0$, où : $(n,\alpha) \in \mathbb{N}^* \times \mathbb{R}^{+*}$.

- $x^2 \cdot y' + y 1 = 0$.
- 2x.(1-x).y' + (1-2x).y 1 = 0
- $x.y' 2.y x^4 = 0$.
- $\sin(x).y' y + 1 = 0.$ (sur \mathbb{R})
- 2. Résoudre le problème de Cauchy suivant : $x.y' y + \ln(x) = 0$, avec : y(1) = 0.

Problèmes liés à une équation différentielle du premier ordre.

- 3. Déterminer l'ensemble des points d'inflexion des courbes intégrales de l'équation : $x.y' 3.y 2.x^2 = 0$. On pourra aussi commencer par trouver un ensemble dans lequel ces points d'inflexion sont inclus.
- 4. Pour : $k \in \mathbb{R}$, trouver toutes les applications continues de \mathbb{R} dans \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, \int_0^x t.f(t).dt = k.x. \int_0^x f(t).dt$$
.

Systèmes différentiels à coefficients constants.

5. Résoudre les systèmes différentiels suivants :

a.
$$\begin{cases} x_1' = 3x_1 - 5x_2 \\ x_2' = x_1 - 3x_2 \end{cases}$$

c.
$$\begin{cases} x_1' = x_1 - x_2 + e^{2t} \\ x_2' = x_1 + 3x_2 + t \end{cases}$$

e.
$$\begin{cases} x_1' = 4x_1 - x_2 - x_3 - t \\ x_2' = x_1 + 2x_2 - x_3 + 2t \\ x_3' = x_1 - x_2 + 2x_3 - t \end{cases}$$

b.
$$\begin{cases} x_1' = x_1 + x_2 + \sin(t) \\ x_2' = -x_1 + 3x_2 \end{cases}$$

d.
$$\begin{cases} x_1' = x_1 + m.x_2 + a.t \\ x_2' = -mx_1 + x_2 + b.t \end{cases}$$
, (m,a,b) $\in \mathbb{R}^3$

f.
$$\begin{cases} x_1' = 3x_1 + x_2 - x_3 + 1 \\ x_2' = x_1 + x_2 + x_3 + e^t \\ x_3' = 2x_1 + 2x_3 \end{cases}$$

Equations différentielles linéaires du second ordre à coefficients constants.

6. Résoudre les équations du second ordre à coefficients constants suivantes :

a.
$$y'' - 2.y' + m.y = cos(x)$$
, où : $m \in \mathbb{R}$.
b. $y'' - 3.y' + 2.y = x.e^{|x|}$ sur \mathbb{R} .

b.
$$y'' - 3.y' + 2.y = x.e^{|x|} sur \mathbb{R}$$
.

c.
$$y''-4.y'+3.y = \frac{2x+1}{x^2}.e^x$$
.

d.
$$y'' + y = max(x,0)$$
.

Problèmes liés à des équations différentielles linéaires du second ordre à coefficients constants.

7. Trouver toutes les fonctions f dérivables de \mathbb{R} dans \mathbb{R} telles que : $\forall x \in \mathbb{R}$, $f'(x) + f(-x) = x \cdot e^x$.

Utilisation de changements de variable.

8. Résoudre les équations différentielles suivantes, à l'aide des changements de variable indiqués.

a.
$$y'' + y' - e^{-2t}$$
. $y = ch(t) + 3.sh(t)$, avec le changement de variable : $u = e^{-t}$.

- b. $(t^2 + 1)^2 \cdot y'' + 2t \cdot (t^2 + 1) \cdot y' + y = (t^2 + 1)^2$, avec le changement de variable : u = Arctan(t).
- Dans les deux cas, on s'efforcera de préciser théoriquement les différentes opérations effectuées.

Utilisation de séries entières.

- 9. Résoudre les problèmes suivants à l'aide de séries entières :
 - a. 2x.y'' + y' y = 0.

On sommera les solutions trouvées.

b.
$$y'' + x \cdot y = 0$$
, $y(0) = 1$, $y'(0) = 0$.
c. $4 \cdot (1 - t^2) \cdot y'' - 4 \cdot t \cdot y' + y = 0$.

Exercices plus.

Equations différentielles linéaires du premier ordre.

- 10. Résoudre sur un intervalle où sinus ne s'annule pas l'équation : $\sin^3(x)$.y' $2.\cos(x)$.y = 0. Donner les solutions de cette équation sur R, et préciser en particulier la dimension de l'espace vectoriel formé par ces solutions.
- 11. Résoudre l'équation : $y' y \ln(x) = 0$.

Existe-t-il des solutions bornées ?

On pourra commencer, pour la deuxième question, par étudier l'intégrabilité d'une fonction sur [1,+∞).

Utilisation de séries entières.

- 12. Résoudre les problèmes suivants à l'aide de séries entières :
 - a. $x^2 \cdot (1 x) \cdot y'' x \cdot (1 + x) \cdot y' + y = 0$,.

On utilisera la méthode de Lagrange pour trouver toutes les solutions.

b. $x.(1 - x).y'' + (\lambda - 3.x).y' - y = 0, (\lambda \in \mathbb{R})$

Sommer alors les solutions trouvées dans le cas où : $\lambda = 1$.

c. Déterminer les séries entières solutions au voisinage de 0 de l'équation différentielle :

$$y'' + 2.x.y' + 2.y = 0,$$

puis exprimer parmi ces séries entières celles dont la somme est une fonction paire.

Problème lié à une équation différentielle du premier, du second ordre ou d'ordre supérieur.

- 13. a. Soit f une fonction définie de R dans R, continue sur R et qui tend vers 0 en +∞. Résoudre l'équation différentielle : y' + y = f, à l'aide d'une fonction exprimée sous forme de primitive et montrer que toute solution de cette équation tend vers 0 en +∞.
 - b. Montrer que si une fonction f de classe C¹ de R dans R est telle que (f' + f) tend vers L en +∞, alors f tend aussi vers L en +∞.
- 14. Soit α un réel strictement positif (ou un complexe de partie réelle strictement positive).

Soit f une fonction de \mathbb{R} dans \mathbb{R} (ou \mathbb{C}), telle que (f ' + α .f) tend vers 0 en + ∞ .

Montrer que f tend vers 0 en $+\infty$.

- 15. On considère le problème suivant : trouver les fonctions de R⁺⁺ dans R, dérivables, telles que : $\forall x > 0, f'(x) = f(1/x).$
 - a. Montrer qu'une telle solution est de classe C² sur R^{+*}.
 - b. En déduire une équation du second ordre linéaire dont f est solution.
 - c. Résoudre cette équation à l'aide du changement de variable : t = ln(x).
 - d. Résoudre alors le problème initial.
- 16. Soit f de \mathbb{R}^+ dans \mathbb{R} , monotone, \mathbb{C}^1 sur \mathbb{R}^+ , admettant une limite finie en +∞. Soit : (E) y" + y = f(x).
 - a. Donner la forme générale des solutions de (E) sur R⁺.
 - b. Montrer que toute solution de (E) sur R⁺ est bornée.
 - c. Montrer que (E) admet une unique solution y_1 ayant une limite finie en $+\infty$. Ecrire y₁ avec une intégrale.
- 17. Soit l'équation différentielle : (E)
- Soit l'équation différentielle : (E) $y^{(4)} 2.y^{(3)} + 2.y'' 2.y' + y = 0.$ a. Montrer que y est solution de (E) si et seulement si : $X = \begin{pmatrix} y \\ y' \\ y'' \\ \dots \end{pmatrix}$, est solution d'un système différentiel :
 - (S) X' = A.X, où A est une matrice que l'on précisera (on pourra s'inspirer de l'équivalence équationsystème vue en cours).
 - b. Montrer que A n'est pas diagonalisable dans C.
 - c. Montrer que : $\mathbb{C}^4 = \ker(A i.I_4) \oplus \ker(A + i.I_4) \oplus \ker((A I_4)^2)$.
 - d. En déduire qu'il existe une matrice inversible P telle que P-1.A.P soit une matrice B définie par blocs de

la façon suivante : B =
$$\begin{bmatrix} i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

e. Résoudre l'équation (E)

Classe d'équations différentielles particulières.

18. Equations d'Euler:

Equations du type : (E) $x^2.y'' + a.x.y' + b.y = f(x)$, où : $(a,b) \in \mathbb{R}^2$, et : $f \in C^0(I,\mathbb{R})$, avec : $I \subset \mathbb{R}^{+*}$ ou \mathbb{R}^{-*} . Montrer que le changement de variable : t = |h|x| permet de ramener (E) à une équation plus simple en t. Résoudre alors :

a. $x^2.y'' - 2.y = x$ (peut-on envisager un autre méthode pour cette équation ?)

b.
$$x^2.y'' + x.y' + y = x.\ln|x|$$
.

Exemples de problèmes théoriques.

19. Soit y une solution maximale de : $y' = \frac{1+x^2}{1+x^2+y^2}$.

Montrer que l'intervalle de définition de y n'est pas majoré et que y tend vers +∞ en +∞.

- 20. Déterminer la (ou les) solution(s) maximale(s) du problème de Cauchy où y est une fonction inconnue à valeurs réelles : $y' = \frac{3 \cdot x^4 + y^4}{4 \cdot x^3}$, x > 0, avec : y(1) = 2.
- 21. Etude de l'équation : (E) $y' \frac{1}{x} \cdot y + \frac{e^x}{x} \cdot y^2 = 0$.

On cherche à résoudre ce problème sur : $I \subset \mathbb{R}^{+*}$

- a. Dans l'hypothèse où la fonction y ne s'annule pas sur un intervalle : $J \subset \mathbb{R}^{+*}$, résoudre cette équation à l'aide de la fonction inconnue auxiliaire : $z = \frac{1}{v}$.
- b. Donner la fonction f, définie de : $U = \mathbb{R}^{+*} \times \mathbb{R}$ dans \mathbb{R} , qui ramène l'équation (E) à : y' = f(x, y), et vérifier que f est de classe C^1 sur U.
- c. Montrer alors que : \forall $(x_0, y_0) \in U$, le problème de Cauchy : $(C_{x0,y0})$ $(y' = f(x, y), y(x_0) = y_0)$ admet une unique solution maximale sur un intervalle ouvert.

Trouver cette solution si l'on suppose : $y_0 = 0$.

On suppose désormais que : $y_0 \neq 0$.

- d. Montrer que parmi les solutions trouvées en a, il en existe une seule qui passe par (x_0, y_0) . On précisera la valeur de la constante λ qui intervient dans l'expression de cette solution.
- e. On note φ l'application de \mathbb{R}^{+*} dans \mathbb{R} , définie par : $\varphi(x) = \frac{x}{e^x 1}$, et γ sa courbe représentative.

Etudier φ et tracer γ .

On va discuter de la solution maximale suivant la position du point (x_0, y_0) .

f. • On suppose que : $0 < y_0 < \phi(x_0)$.

Montrer alors que : $\lambda \ge$ -1 , que la solution maximale est définie sur \mathbb{R}^{+*} , et tracer l'allure de la courbe représentative d'une telle solution.

• On suppose que : $y_0 = \varphi(x_0)$.

Que vaut λ et que dire de la solution maximale dans ce cas ?

- On suppose que : $y_0 > \varphi(x_0)$.
 - Préciser la valeur de λ , puis montrer que la solution maximale est définie sur un intervalle $]\alpha_0,+\infty)$, où l'on précisera α_0 , et tracer l'allure de sa courbe représentative.
- On suppose que : $y_0 < 0$.

Donner l'intervalle de définition de la solution maximale et la représenter.

g. Rassembler ces courbes sur un même schéma et constater qu'elles forment bien une partition de U.